新测试基准发布,最强开源Llama 3分数骤降,差距拉开了     DATE: 2024-05-21 04:12:13

梦晨 发自 凹非寺
量子位 | 公众号 QbitAI

如果试题太简单,新测学霸和学渣都能考90分 ,试基拉不开差距……

新测试基准发布,最强开源Llama 3分数骤降,差距拉开了

随着Claude 3 、准发骤降Llama 3甚至之后GPT-5等更强模型发布,布最业界急需一款更难、强开更有区分度的分数澳门码鞋一肖一码基准测试 。

新测试基准发布,最强开源Llama 3分数骤降,差距拉开了

大模型竞技场背后组织LMSYS推出下一代基准测试Arena-Hard,差距引起广泛关注。拉开

新测试基准发布,最强开源Llama 3分数骤降,差距拉开了

Llama 3的新测两个指令微调版本实力到底如何,也有了最新参考 。试基



与之前大家分数都相近的准发骤降MT Bench相比 ,Arena-Hard区分度从22.6%提升到87.4%,布最孰强孰弱一目了然。强开

Arena-Hard利用竞技场实时人类数据构建 ,分数与人类偏好一致率也高达89.1%。差距

除了上面两个指标都达到SOTA之外 ,还有一个额外的好处 :

实时更新的测试数据包含人类新想出的 、AI在训练阶段从未见过的提示词 ,减轻潜在的数据泄露 。

并且新模型发布后,无需再等待一周左右时间让人类用户参与投票,王中王王中王免费资料只需花费25美元快速运行测试管线 ,即可得到结果。

有网友评价 ,使用真实用户提示词而不是高中考试来测试 ,真的很重要 。



新基准测试如何运作?

简单来说  ,通过大模型竞技场20万个用户查询中 ,挑选500个高质量提示词作为测试集 。

首先 ,挑选过程中确保多样性 ,2024今晚澳门特马开什么号也就是测试集应涵盖广泛的现实世界话题。

为了确保这一点 ,团队采用BERTopic中主题建模管道  ,首先使用OpenAI的嵌入模型(text-embedding-3-small)转换每个提示,使用 UMAP 降低维度 ,并使用基于层次结构的模型聚类算法(HDBSCAN)来识别聚类 ,最后使用GPT-4-turbo进行汇总。



同时确保入选的提示词具有高质量 ,有七个关键指标来衡量 :

具体性:提示词是否要求特定的输出 ?领域知识 :提示词是否涵盖一个或多个特定领域?复杂性 :提示词是否有多层推理、组成部分或变量?解决问题 :提示词是否直接让AI展示主动解决问题的能力 ?创造力 :提示词是否涉及解决问题的一定程度的创造力?技术准确性:提示词是否要求响应具有技术准确性 ?实际应用:提示词是否与实际应用相关 ?



使用GPT-3.5-Turbo和GPT-4-Turbo对每个提示进行从 0 到 7 的注释 ,判断满足多少个条件。然后根据提示的平均得分给每个聚类评分。

高质量的问题通常与有挑战性的话题或任务相关 ,比如游戏开发或数学证明 。



新基准测试准吗?

Arena-Hard目前还有一个弱点 :使用GPT-4做裁判更偏好自己的输出 。官方也给出了相应提示 。

可以看出 ,最新两个版本的GPT-4分数高过Claude 3 Opus一大截 ,但在人类投票分数中差距并没有那么明显。



其实关于这一点 ,最近已经有研究论证,前沿模型都会偏好自己的输出。



研究团队还发现 ,AI天生就可以判断出一段文字是不是自己写的,经过微调后自我识别的能力还能增强 ,并且自我识别能力与自我偏好线性相关。



那么使用Claude 3来打分会使结果产生什么变化 ?LMSYS也做了相关实验。

首先 ,Claude系列的分数确实会提高。



但令人惊讶的是 ,它更喜欢几种开放模型如Mixtral和零一万物Yi,甚至对GPT-3.5的评分都有明显提高 。

总体而言 ,使用Claude 3打分的区分度和与人类结果的一致性都不如GPT-4 。



所以也有很多网友建议,使用多个大模型来综合打分。



除此之外,团队还做了更多消融实验来验证新基准测试的有效性。

比如在提示词中加入“让答案尽可能详尽”,平均输出长度更高,分数确实会提高。

但把提示词换成“喜欢闲聊”,平均输出长度也有提高 ,但分数提升就不明显 。



此外在实验过程中还有很多有意思的发现 。

比如GPT-4来打分非常严格,如果回答中有错误会狠狠扣分;而Claude 3即使识别出小错误也会宽大处理 。

对于代码问题 ,Claude 3倾向于提供简单结构、不依赖外部代码库 ,能帮助人类学习编程的答案;而GPT-4-Turbo更倾向最实用的答案,不管其教育价值如何 。

另外即使设置温度为0  ,GPT-4-Turbo也可能产生略有不同的判断 。

从层次结构可视化的前64个聚类中也可以看出,大模型竞技场用户的提问质量和多样性确实是高。



这里面也许就有你的贡献。

Arena-Hard GitHub:
https://github.com/lm-sys/arena-hard
Arena-Hard HuggingFace:
https://huggingface.co/spaces/lmsys/arena-hard-browser
大模型竞技场  :
https://arena.lmsys.org

参考链接:
[1]https://x.com/lmsysorg/status/1782179997622649330
[2]https://lmsys.org/blog/2024-04-19-arena-hard

特别声明 :以上内容(如有图片或视频亦包括在内)为自媒体平台“网易号”用户上传并发布 ,本平台仅提供信息存储服务 。

Notice: The content above (including the pictures and videos if any) is uploaded and posted by a user of NetEase Hao, which is a social media platform and only provides information storage services.